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Classification of phases in 2D

Rigorous bulk boundary correspondence

Showing that specific models are gapped:

Ex. The 2D AKLT on hexagonal lattice

Motivation:
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WHY PEPS?

⇤

The PEPS on      with boundary 
condition          is given by 

⇤
�@⇤

| ⇤,�i = h�@⇤|
O

v2⇤

Tv

O

e2E⇤̄

|!ei

Efficient numerical algorithms

Efficient local description of topological order

Believed to accurately characterise ground 
states of gapped many body Hamiltonians

If you’re not yet convinced, go have a beer 
with Frank or Norbert…



INJECTIVITY

⇤

The PEPS on      with boundary 
condition          is given by 

⇤
�@⇤

| ⇤,�i = h�@⇤|
O

v2⇤

Tv

O

e2E⇤̄

|!ei

For convenience, we define a map

V⇤ =
O

v2⇤

Tv

O

e2E⇤̄

|!ei

      is a mapping from the boundary 
Hilbert space to the bulk Hilbert 
space

V⇤

The PEPS is injective on     if the map 

                               is injective. 

⇤
V⇤ : H@⇤ ! H⇤

The PEPS is injective, if if is injective on 

all sufficiently large squares. 

|!ei

VA

Tv
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Theorem: the parent Hamiltonian of an 
injective MPS is gapped. Fannes, Nachtergaele, Werner, ‘92

But there exist critical 
injective PEPS!

Perez-Garcia, Verstraete, Wolf, Cirac, ‘07
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The boundary state is obtained by 
contracting the physical indices and keeping 
the virtual ones open 
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†
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state projector
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X

e2E⇤

he
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The ‘Martingale’ gap theorem:

A B C
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Theorem: if for three adjacent 
rectangles                      , and some 
constants              , the following 
holds  

Then      is gapped.  Nachtergaele, ’92,  
K., Brandao, ’15,  
K., Lucia, ‘17
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Conversely, if      is uniformly 
gapped then 
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Quantum extension of the theorems relating spacial mixing to 
convergence of Glauber dynamics for ferromagnetic Ising model.
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TWO DIMENSIONS

a b

cd
A B C

z

z

`
``

⇢̃�1
BC = ⌦�1

dz �
�1
zb⇢̃�1

AB = ��1
az ⌦

�1
zc ⇢̃B = ⌦zc⌦dz

||⇢̃�1/2
X ⇢X ⇢̃�1/2

X � 1||  1 X 2 {ABC,AB,BC,B}

Factorization property
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THE BOUNDARY STATES
When is the factorization property satisfied? One dimensional (MPS)

In 1D, the boundary state is the Choi–Jamiołkowski state of (a power 
of) the transfer operator:

= ⇢@A = E5

A E

For injective MPS, E can be made to be a primitive completely 
positive trace preserving map, and

Exponentially in n

Exponentially in n

En ! E1 = tr[·]�
||⇢@[1,n] � 1⌦ �|| ! 0



THE BOUNDARY STATES
When is the factorization property satisfied? Gibbs states at the boundary

Suppose the boundary state is a local Gibbs state:

a b

cd
A B C

x y

x y

` `
` `

⇢@ABC = e2HABC
HABC =

X

Z⇢axyb

hZ



THE BOUNDARY STATES
When is the factorization property satisfied? Gibbs states at the boundary

Suppose the boundary state is a local Gibbs state:

a b

cd
A B C

x y

x y

` `
` `

⇢@ABC = e2HABC
HABC =

X

Z⇢axyb

hZ

Construct the following operators

⌦�1
L ⌦�1

R

⇢1/2
@ABC

⇢̃�1
@ABC

⇢1/2
@ABC

:= eHaxybe�HaxyeHye�Haxe�HybeHxe�HxybeHaxyb

= eHaxybe�HaxyeHye�Hybe�HaxeHxe�HxybeHaxyb

Each bit separately close to identity!



THE BOUNDARY STATES
When is the factorization property satisfied? Gibbs states at the boundary

Suppose the boundary state is a local Gibbs state:

a b

cd
A B C

x y

x y

` `
` `

⇢@ABC = e2HABC
HABC =

X

Z⇢axyb

hZ

Is based on Araki’s proof of analycity 
of imaginary time evolution in 1D!

eHaxybe�HaxyeHye�Hyb ⇡ 1

Reminiscent of the conditional 
mutual information I⇢(A : C|B) = tr[⇢(� log ⇢ABC + log ⇢AB � log ⇢B + log ⇢BC)]

We don’t know to what extent the 
two are equivalent?



THE BOUNDARY STATES
Why should we believe the boundary state is Gibbs?

Numerics on the AKLT model

H@ =
X

r,k

drSk · Sk+r +RModelling Hamiltonian:

Unfortunately, exponential tails break our argument (since 
Araki’s analycity techniques to not extend to exponential tails!)



OUTLOOK
Can a converse be shown: that a gapped bulk implies quasi-
factorisation of the boundary sates?

Can quasi-factorisation be shown for specific models? 

AKLT on the hexagonal lattice? 

Normalization or temperature of the boundary state?

Relation to other static properties, such as LTQO?

Can similar bulk-boundary correspondences be shown 
beyond the setting of PEPS?



THANK YOU!


