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If the boundary state of an (injective)
PEPS is Gibbs (or sufficiently local), then
its parent Hamiltonian is gapped.
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If the boundary state of an (injective)
PEPS is Gibbs (or sufficiently local), then
its parent Hamiltonian is gapped.

Motivation: » Classification of phases in 2D

» Rigorous bulk boundary correspondence

» Showing that specific models are gapped:
Ex. The 2D AKLT on hexagonal lattice
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A SR, S N N @ A is afinite subset of an (infinite) graph (G, E);

Typically a lattice.

: : @ Associate to each edge e € Ex a maximally
R e e D entangled state
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BASICS

@ A is a finite subset of an (infinite) graph

Typically a lattice.

@ Associate to each edge e € /5 a maximally

entangled state
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D is the bond dimension

@ Associate to each vertex v € A alinear map

il 7‘[®d€g(v) — Hy
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d is the dimension of the local physical space.
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A Ay a @ A is a finite subset of an (infinite) graph
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| o R D is the bond dimension

@ Associate to each vertex v € A alinear map
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d is the dimension of the local physical space.

@ On the remaining virtual links associate a
Boundary state
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The PEPS on A with boundary
condition XoA is given by
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|l ‘o a0 b 4 4 | » Efficient numerical algorithms
$ @ @ @ @

| ‘o o0 o o ! | » Efficient local description of topological order
A ZA N 2N AN \'/E

| ioh o0 o o a: | » Believed to accurately characterise ground
D A, A 4 states of gapped many body Hamiltonians
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h\‘v W W W W. » If you’re not yet convinced, go have a beer

| 'ah 40 40 4 ' | with Frank or Norbert...
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The PEPS on A with boundary
condition XoA is given by

‘ Tax) = (xoal R To X Iwe)

vEA GEE]\




INJECTIVITY

b o b e A (R 1
5 @ For convenience, we defineamap i 5
O 0-6-0-0 R )

5 | Va = Q10| Q| lwe)
@D 40 40 &0 40 | eC Ex | 11

AV R e ) 5 )l >

: : I I We
B e 2 ol V{\ is a mapping from the boundary

h\-/ y v v W Hilbert space to the bulk Hilbert s B
L gD @ @& @& @& | Space S ’

b A0 4. 4. 4. 4 Va

Lo Bt s G SIS @ The PEPS is injective on A if the map

Vo : Han — Ha is injective.
The PEPS on A with boundary

condition XaA is given by @ The PEPS is injective, if if is injective on

all sufficiently large squares.
Uax) = (xoal @) T @ lwe)
vEA €€E]\
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O A ‘parent’ Hamiltonian can be constructed:

WY
b, 0.

B @ @ @
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E with localterms A = 7Y (1 — lw. Mw. NT 1
| i o b B ob ' | e = Tupne) (1 = lwe) (el Tpncey
N A A 4 i g
|l & & & @i | 2 wbnie) = Q) Ty
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@ The parent Hamiltonian is frustration free:
The PEPS on A with boundary

condition X6A Is given by h \\PA > i
e DG/

[ax) = (xoal @ To Q) we)

VEA €€E]\

for all e € Fp
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@ The parent Hamiltonian is frustration free:
The PEPS on A with boundary

condition X6A Is given by h \\PA > i
e DG/

Uax) = (xoal @ To Q) we)

VEA eEE]\

for all e € Fp

We want to infer properties of the parent
Hamiltonian from properties of the state!
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@ A ‘parent’ Hamiltonian can be constructed:

HA: Zhe

Y,
Y,
Y
X,
Y,

AL 4 :
@

| /..9 /..9 /..9 /..9 I ec b
() . ? () ® : s = 1| —1
a0 G0 40 &0 4. | sl Tnbh(e)(l i ’w€><w€’)Tnbh(€)
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@ The parent Hamiltonian is frustration free:
The PEPS on A with boundary

condition X6A Is given by h \\PA > i
e DG/

[ax) = (xoal @ To Q) we)

VEA eEE]\

for all e € Fp

» But there exist critical

: . injective PEPS!
Theorem: the pa'P ent Hamlltonla’n Of all Perez-Garcia, Verstraete, Wolf, Cirac, ‘07

lIIJ eCtlve MPS 1S g&pped. Fannes, Nachtergaele, Werner, ‘92




BOUNDARY STATES
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[ ) @ The boundary state is obtained by
- — PO A contracting the physical indices and keeping
C ) the virtual ones open
b = U poa =ViVa
N S ) @ Properties of the boundary state:
poa | m o4 >0

» kel‘paA — kerVA

@ If the PEPS is injective, then
m poa >0
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DARY S TATES

@ The boundary state is obtained by
contracting the physical indices and keeping
the virtual ones open

Naturally related to the o
entanglement spectrum!

@ If the PEPS is injective, then
m poa >0
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7 Wl
@ The boundary state is obtained by
PO A contracting the physical indices and keeping
the virtual ones open
e POA = VjVA
: D @ Properties of the boundary state:
POA m pos = 0

O

@ Can explicitly construct a ground

state projector

Pa=VappaVa

Va

» kel‘paA — kerVA

If the PEPS is injective, then

m poa >0
Vi
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@ Can explicitly construct a ground
state projector
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BOUNDARY STATES

@ The boundary state is obtained by
contracting the physical indices and keeping
the virtual ones open

POA = V;{ Va

PO A

@ Can explicitly construct a ground

state projector

Pa=VappaVa

B @ Properties of the boundary state:

= poa > 0
» kel‘paA — kerVA

@ If the PEPS is injective, then

m poa >0

Observe: » P4 projects onto the ground state
subspace of H 4 := he

ecFEA
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@ The spectral gap \(A) of a frustration-free Hamiltonian H y is the
smallest non-zero eigenvalue of H . If inf A(A) > 0 then we say
that H is gapped. At




"ROOF OF THE G

@ The spectral gap \(A) of a frustration-free Hamiltonian H y is the
smallest non-zero eigenvalue of H . If inf A(A) > 0 then we say

that H is gapped.

©  The ‘Martingale’ gap theorem:

Theorem: if for three adjacent
rectangles A, B,C C A, and some
constants o, c > 0 the following
holds

|PapPpc — Papcl| £ €5

Then H is ga,pped Nachtergaele, *92,

K., Brandao, ’15,
K., Lucia, ‘17

A

=) Conversely, if H is uniformly
gapped then

|PagPsc — Papc|| < Ce *BS



ROOF OF THE Gie

@ The spectral gap \(A) of a frustration-free Hamiltonian H y is the
smallest non-zero eigenvalue of H . If inf A(A) > 0 then we say

that H is gapped.

©  The ‘Martingale’ gap theorem:

Theorem: if for three adjacent
rectangles A, B,C C A, and some
constants o, c > 0 the following
holds

|PapPpc — Papcl| £ €5

Then H is ga,pped Nachtergaele, *92,

K., Brandao, ’15,
K., Lucia, ‘17

A

=) Conversely, if H is uniformly
gapped then

|PagPsc — Papc|| < Ce *BS

=) Quantum extension of the theorems relating spacial mixing to
convergence of Glauber dynamics for ferromagnetic Ising model.
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) PEPS basics 2) Spectral gap for frustration free

Hamiltonians
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@ Sketch of the one dimensional case = PapPpc =~ Papc
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o —1/2 ~ —1/2
g “paspar” =1l <e

—1/2 ~ —1/2

1/2 ~—1 1/2
HPB/ pBlpB/ —1f| <e

Essence of the argument

lppo " PBCPpe” — Ul < €= |[PapPpc — Papcl|| < 8¢




THE MAIN THEOREM

@ Sketch of the one dimensional case = PapPpc =~ Papc

_—

Essence of the argument

L=

P 1l 19
7 Nload paspay” — 1l < e

1P prcppe” — 1| <€ = [|[PapPsc — Papc|| < 8¢

1/2 ~—1 1/2

HPB PB PB _1H < d

f
/)




TWO DIMENSIONS

3 Z b
d q
A it C
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5ak = Azl pob = Q)AL pp =0l

px Pexpx -1 <1 X € {ABC, AB, BC, B)

|




OUTLIN

4) The boundary states 3) The main theorem

e \

o an (injective)
- , then

) PEPS basics 2) Spectral gap for frustration free

Hamiltonians



THE BOUNDARY STATES

When is the factorization property satisfied? ®)»  One dimensional (MPS)

C In 1D, the boundary state is the Choi-damiotkowski state of (a power
of) the transfer operator:

Q)  For injective MPS, E can be made to be a primitive completely
positive trace preserving map, and

— I e = ] s Exponentially in n
> Hpa[l,n] i UH a0 Exponentially in n



THE BOUNDARY STATES

When is the factorization property satisfied? =)  Gibbs states at the boundary

O Suppose the boundary state is a local Gibbs state:

a TR
d X % C
2H . .
SRS e S H o= Y hz A VBN C
— —
ZCaxyb U S
SE SN
=TT



THE BOUNDARY STATES

When is the factorization property satisfied? =)  Gibbs states at the boundary

O Suppose the boundary state is a local Gibbs state:

a L Y ;
2HAaBC d c
PoABC = € Hapc = g hz A o C
IS5 >
Z Caxyb / ;
e AW
Pt
@ Construct the following operators
1 2 S 1 2 ....... _ .................................................... _ .................. y ) ...... _ .............................................................................
PaéchPaijcﬂaéch — e H“"”ie Hyb o Ha o =Hayb pHazyp
27 Q=

Each bit separately close to identity!




THE BOUNDARY STATES

When is the factorization property satisfied? =)  Gibbs states at the boundary

O Suppose the boundary state is a local Gibbs state:

. TR b
2H iy e
Vel 2 H,sc— Y  hy A VBN C
— P
Z Caxyb / e SRR /

R
=TT

Q efamvreHasy oty o=Hus oy ] |s based on Araki’s proof of analycity

of imaginary time evolution in 1D!

=» Reminiscent of the conditional
mutual information  7,(A : C|B) = tr[p(—log papc +log pap — log pp + log ppc)]

=» We don’t know to what extent the
two are equivalent?
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Why should we believe the boundary state is Gibbs?

©  Numerics on the AKLT model

O L - "oy 1
2-leg AKLT ladder X \,,  Infinite AKLT cylinder .
T\ ‘
AN A,,=0.009]
I NN _
Amax=o'3 \: :~§ : :
0.1 =4 I o O O O
= ] \s e R s T\
2 Q O o
§ 3 \0 o R R
N N\ o TTo N
Q NV= 6 S\ o Q
E 0.01 E = Q O E
) o3 MApay N2 o )
1 o 02 04 06 08 &4 o
rlllll II]IIIIIII&(;)]IIL
A _ Ehiif e Il R, ©0.01
0001 4 " | S
: 1 tF - 15Be O
>4 =
e
il | 1111 I 1111 | 1111
I B N B T R R R R
1 2 3 4 353 6 1 1 2 3 4 5§ & 7
r r

In /2,1

byl s

Modelling Hamiltonian:

i
oy 05,8,

Unfortunately, exponential tails break our argument (since
Araki’s analycity techniques to not extend to exponential tails!)




OUTLOOK

@ Can a converse be shown: that a gapped bulk implies quasi-
factorisation of the boundary sates?

@ Can quasi-factorisation be shown for specific models?

m)> AKLT on the hexagonal lattice?

@ Normalization or temperature of the boundary state?
@ Relation to other static properties, such as LTQO?

@ Can similar bulk-boundary correspondences be shown
beyond the setting of PEPS?
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